Inverting Adversarially Robust Networks for Image Synthesis

نویسندگان

چکیده

Despite unconditional feature inversion being the foundation of many image synthesis applications, training an inverter demands a high computational budget, large decoding capacity and imposing conditions such as autoregressive priors. To address these limitations, we propose use adversarially robust representations perceptual primitive for inversion. We train encoder to extract disentangled perceptually-aligned representations, making them easily invertible. By simple generator with mirror architecture encoder, achieve superior reconstruction quality generalization over standard models. Based on this, autoencoder demonstrate its improved performance style transfer, denoising anomaly detection tasks. Compared recent ImageNet methods, our model attains significantly less complexity. Code available at https://github.com/renanrojasg/adv_robust_autoencoder .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverting Convolutional Networks with Convolutional Networks

Feature representations, both hand-designed and learned ones, are often hard to analyze and interpret, even when they are extracted from visual data. We propose a new approach to study image representations by inverting them with an up-convolutional neural network. We apply the method to shallow representations (HOG, SIFT, LBP), as well as to deep networks. For shallow representations our appro...

متن کامل

Image Repairing: Robust Image Synthesis by Adaptive ND Tensor Voting

We present a robust image synthesis method to automatically infer missing information from a damaged 2D image by tensor voting. Our method translates image color and texture information into an adaptive ND tensor, followed by a voting process that infers non-iteratively the optimal color values in the ND texture space for each defective pixel. ND tensor voting can be applied to images consistin...

متن کامل

Hierarchical Adversarially Learned Inference

We propose a novel hierarchical generative model with a simple Markovian structure and a corresponding inference model. Both the generative and inference model are trained using the adversarial learning paradigm. We demonstrate that the hierarchical structure supports the learning of progressively more abstract representations as well as providing semantically meaningful reconstructions with di...

متن کامل

Deep and Wide Multiscale Recursive Networks for Robust Image Labeling

Feedforward multilayer networks trained by supervised learning have recently demonstrated state of the art performance on image labeling problems such as boundary prediction and scene parsing. As even very low error rates can limit practical usage of such systems, methods that perform closer to human accuracy remain desirable. In this work, we propose a new type of network with the following pr...

متن کامل

Adversarially Regularized Graph Autoencoder

Graph embedding is an e‚ective method to represent graph data in a low dimensional space for graph analytics. Most existing embedding algorithms typically focus on preserving the topological structure or minimizing the reconstruction errors of graph data, but they have mostly ignored the data distribution of the latent codes from the graphs, which o‰en results in inferior embedding in real-worl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2023

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-26351-4_24